

Contato:

Divisão de Áreas Verdes e Vias—DAVV

3320 6105

davv.delogs@ufrpe.br

Solicitadavv.delogs@ufrpe.br

Warning Chemical waste

ORIENTAÇÕES PARA O GERENCIAMENTO DE RESÍDUOS QUÍMICOS

Universidade Federal Rural de Pernambuco

Departamento de Logística e Serviços Divisão de Áreas Verdes e Vias

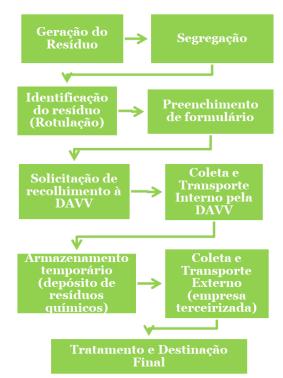
Motivação

Ao longo dos anos, a preocupação com a destinação de resíduos gerados nos ambientes organizacionais tem tomado proporções avassaladoras em detrimento do consumo desenfreado de materiais e destinação incorreta destes produtos.

Levando em conta o contexto de uma universidade, local onde ocorre a formação de cidadãos conscientes no que diz respeito à tomada de decisões, se faz necessário o bom exemplo no processo de gestão de resíduos originados na instituição.

Este manual reflete uma série de práticas a serem seguidas pela comunidade acadêmica da UFRPE com o intuito de garantir o correto armazenamento, coleta, transporte e destinação dos resíduos químicos na instituição.

O que são resíduos químicos?


- ⇒ Reagentes de laboratório;
- ⇒ Medicamentos:
- ⇒ Produtos de Limpeza;
- ⇒ Reveladores e fixadores de raios X;
- Vidrarias de laboratório e recipientes contaminados com reagentes químicos.

Os resíduos químicos ainda se subdividem em:

- ⇒ Resíduos químicos não perigosos: Sais inorgânicos de metais alcalinos e alcalinos terrosos em solução aquosa como: NaCl, KCl, CaCl₂, MgCl2, Na₂SO₄, MgSO₄ (desde que altamente diluído em água).
- ⇒ Resíduos químicos perigosos: Materiais que apresentam características como alta toxicidade, inflamabilidade, corrosividade, reatividade ou patogenicidade. Exemplo: metais pesados, solventes orgânicos clorados e não clorados,mercúrio, entre outros.

Como funciona o gerenciamento de resíduos químicos na UFRPE?

O serviço de gerenciamento de resíduos químicos da UFRPE tem sido monitorado pela Divisão de Áreas Verdes e Vias—DAVV/DELOGS, sendo constituído das seguintes etapas:

Para o gerenciamento de resíduos químicos, é necessário estar atento a algumas informações primordiais:

- ⇒ JAMAIS descartar resíduos químicos na pia;
- ⇒ Não armazene grande quantidade de resíduos dentro do laboratório;
- ⇒ Evite misturas complexas de resíduos;
- ⇒ Sempre que for viável, realizar a recuperação, doação ou reciclagem dos resíduos gerados;
- ⇒ Dentro do possível, realizar a inativação das substâncias perigosas presentes no resíduo, tornando o material inofensivo em sua manipulação;
- Os resíduos devem estar rotulados adequadamente, com informações sobre a composição e quantidade do material;
- ⇒ Deve-se acondicionar os resíduos em recipientes adequados, verificando sempre a compatibilidade entre o resíduo e o frasco para evitar a corrosão do recipiente;
- ⇒ Frascos vazios de reagentes deverão ser lavados com água em triplicata previamente pelo setor gerador de resíduo;
- ⇒ A água utilizada na lavagem deverá ser tradada como resíduo químico por conter traços de materiais tóxicos;
- ⇒ Objetos contaminados com produtos químicos devem ser descartados como tal, ex.: vidrarias, recipientes, papel de filtro, luvas, eppendorfs.
- Resíduos sólidos extremamente reativos em água (Na, Li, K) devem ser acondicionados em líquidos inertes.
- Medicamentos vencidos devem ser acondicionados separadamente devido à contrato espe-

Segregação e Acondicionamento

Resíduos Químicos Líquidos:

⇒ Os resíduos químicos líquidos devem ser segregados e acondicionados com o intuito de evitar reações indesejadas devido a incompatibilidade de produtos, tendo como base uma separação de resíduos levando em conta a classificação química das substâncias.

Resíduos Químicos Sólidos:

- ⇒ Devem ser separados de acordo com a compatibilidade química em seus próprios frascos e acondicionados em caixas resistentes.
- ⇒ Após a devida separação, os produtos que não possuem o rótulo de fábrica devem ser rotulados com a etiqueta fornecida pela DAVV.

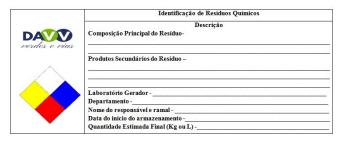
Classificação para segregação e acondicionamento dos resíduos químicos:

- ⇒ Ácidos
- ⇒ Bases
- ⇒ Oxidantes
- ⇒ Soluções aquosas
- ⇒ Mercúrio e compostos de mercúrio
- ⇒ Metais pesados
- ⇒ Compostos orgânicos halogenados
- ⇒ Compostos orgânicos não halogenados
- ⇒ Formalina ou formaldeído
- ⇒ Corrosivas
- ⇒ Asfixiantes
- ⇒ Brometo de etídio
- ⇒ Carcinogênicas, mutagênicas e teratogênicas
- ⇒ Líquidos Criogênicos
- ⇒ De Combustão Espontânea
- \Rightarrow Explosivas
- \Rightarrow Gases comprimidos
- \Rightarrow Líquidos inflamáveis
- ⇒ Materiais reativos com a água

- ⇒ Materiais reativos com o ar
- ⇒ Mistura sulfocrômica
- ⇒ Óleos
- ⇒ Venenos

Fonte: Resolução ANVISA RDC Nº 222/2018

Tipos de Recipientes para Acondicionamento de Resíduos Químicos


- Utilizar recipientes constituídos de polietileno de alta densidade (PEAD) ou de vidro (Verificar tabela 2 compatibilidade entre os tipos de resíduos e os recipientes).
- ⇒ No caso de haver incompatibilidade do resíduo com plástico (polietileno de alta densidade) utilizar frascos de vidro.

Exemplos de recipientes para acondicionamento de Resíduos Químicos.

Identificação do Resíduo

⇒ Solicitar etiqueta modelo para rotulação dos resíduos químicos à DAVV (solicitadavv.delogs@ufrpe.br):

OBS: NÃO SERÁ PERMITIDA A COLE-TA INTERNA DE RESÍDUOS NÃO IDENTIFICADOS.

Diamante de Hommel

- Preencher o Diamante de Hommel de acordo com informações contidas na FISPQ (Ficha de Informações de Segurança de Produtos Químicos) de cada substância;
- ⇒ Se houver mais de uma substância no recipiente, preencher com a classificação da substância mais perigosa;

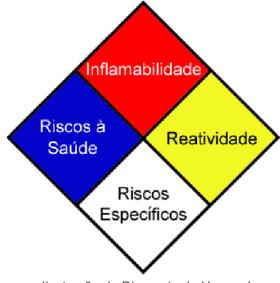


Ilustração do Diamante de Hommel

Riscos à Saúde	Inflamabilidade
4 - Letal	4 - Abaixo de 23°C
3 - Muito Perigoso	3 - Abaixo de 38ºC
2 - Perigoso	2 - Abaixo de 93ºC
1 - Risco Leve	1 - Acima de 93°C
0 - Material normal	0 - Não queima
Riscos Específicos	Reatividade:
OX - oxidante	4 - Pode explodir
ACID - ácido	3 - Pode explodir com cho-
ALK - álcali (Bases)	que mecânico ou calor
COR - Corrosivo	2 - Reação química violenta
₩ - não misture com água	1 - Instável se aquecido
++ - Hao Hilsture Com agua	0 - Estável

Classificação de periculosidade de produtos químicos para preenchimento do Diamante de Hommel.

Armazenamento, Coleta e Transporte Interno

⇒ Os funcionários responsáveis pelo recolhimento de resíduos irão coletar os resíduos corretamente acondicionados mediante solicitação do setor/laboratório gerador de resíduo. Na solicitação através de correio eletrônico, o responsável pelo setor/laboratório deve preencher uma ficha de solicitação de recolhimento de resíduos químicos e enviar para a DAVV. Dessa forma os resíduos serão transportados até o depósito de armazenamento temporário de resíduos químicos até a contratação de empresa externa, que dará a destinação adequada aos produtos.

Email de solicitação: Solicitadavv.delogs@ufrpe.br Assunto do email: Resíduos químicos

Coleta, Transporte Externo e Disposição Final

⇒ A coleta e transporte externo, bem como a destinação adequada deverá ser realizada por empresa especializada no serviço, contratada semestralmente pela universidade para realizar o tratamento e dar destinação aos produtos.

OBS.: Os resíduos químicos gerados nas unidades acadêmicas devem ser transportados até a sede – Dois Irmãos para destinação adequada.

Como posso realizar o tratamento dos resíduos químicos?

- O tratamento de resíduos químicos deve ser de responsabilidade do próprio laboratório gerador de resíduos.
- ⇒ Recomenda-se seguir as instruções para tratamento de resíduos químicos contidas no site:

https://www.unodc.org/pdf/publications/st-nar-36.pdf

⇒ Pesquisar o item 4: "PRACTICAL DETAILS FOR CHEMICAL NEUTRALIZATION AND TREA-TMENT" (página 27 -37).

Tabela 1: Incompatibilidade — Resíduos Químicos

Substância	Incompatibilidade química
Acetileno	Cloro, bromo, flúor, cobre, pra- ta, Mercúrio
Ácido Acético	Acido crômico, ácido perclóri- co, peróxidos, permangana- tos, ácido nítrico, etilenoglicol
Acetona	Misturas de ácidos sulfúrico e nítrico concentrados, Peróxido de hidrogênio
Ácido crômico	Ácido acético, naftaleno, cânfo- ra, glicerol, turpentine, álcool, outros líquidos inflamáveis
Ácido cianídrico	Ácido nítrico, álcalis
Ácido fluorídrico ani- dro, fluoreto de hi- drogênio	Amônia (aquosa ou anidra)
Ácido nítrico concentrado	Ácido cianídrico, anilinas, Óxidos de cromo VI, Sulfeto de hidrogênio, líquidos e gases combustíveis, ácido acético, ácido crômico
Ácido oxálico	Prata e Mercúrio
Ácido perclórico	Anidrido acético, álcoois, Bis- muto e suas ligas, papel, ma- deira
Ácido sulfúrico	Cloratos, percloratos, permanganatos e água
Alquil alumínio	Água
Amônia anidra	Mercúrio, Cloro, Hipoclorito de cálcio, Iodo, Bromo, Acido fluorídrico
Anidrido acético	Compostos contendo hidroxil tais como etilenoglicol, Acido perclórico
Anilina	Ácido nítrico, Peróxido de hidrogênio

Azida sódica	Chumbo, Cobre e outros metais
Bromo e cloro	Benzeno, Hidróxido de amônio, benzina de petróleo, Hidrogê- nio, acetileno, etano, propano, butadienos, pós- metálicos
Carvão ativo	Dicromatos, permanganatos, Acido nítrico, Acido sulfúrico, Hipoclorito de sódio
Cloro	Amônia, acetileno, butadieno, butano, outros gases de petró- leo, Hidrogênio, Carbeto de sódio, turpentine, benzeno, me- tais finamente divididos, benzi- nas e outras frações do petró- leo
Cianetos	Ácidos e álcalis
Cloratos, perclo- ratos, clorato de potássio	Sais de amônio, ácidos, metais em pó, matérias orgânicas parti- culadas, substâncias combustí- veis
Cobre metálico	Acetileno, peróxido de hidrogê- nio, azidas
Dióxido de cloro	Amônia, metano, fósforo, sulfeto de hidrogênio
Flúor	Manter isolado de outros produtos químicos.
Fósforo	Enxofre, compostos oxigenados, cloratos, percloratos, nitratos, permanganatos
Halogênios (flúor, cloro, bro- mo e iodo)	Amoníaco, acetileno e hidrocar- bonetos
Hidrazida	Peróxido de hidrogênio, ácido nítrico e outros oxidantes
Hidrocarbonetos (butano, propano, tolueno)	Ácido crômico, flúor, cloro, bromo, peróxidos
lodo	Acetileno, hidróxido de amônio, hidrogênio

Líquidos inflamáveis	Ácido nítrico, nitrato de amônio, óxido de cromo VI, peróxidos, flúor, cloro, bromo, hidrogênio
Mercúrio	Acetileno, ácido fulmínico, amô- nia
Metais alcalinos	Dióxido de carbono, tetracloreto de carbono, outros hidrocarbo- netos clorados
Nitrato de amônio	Ácidos, pós metálicos, líquidos inflamáveis, cloretos, enxofre, compostos orgânicos em pó
Nitrato de sódio	Nitrato de amônio e outros sais de amônio
Óxido de cálcio	água
Óxido de cromo VI	Ácido acético, glicerina, benzina de petróleo, líquidos inflamá- veis, naftaleno
Oxigênio	Óleos, graxas, hidrogênio, líqui- dos, sólidos e gases inflamá- veis
Perclorato de potássio	Ácidos
Permanganato de po- tássio	Glicerina, etilenoglicol, ácido sulfúrico
Peróxido de hidrogênio	Cobre,cromo, ferro, álcoois, acetonas, substâncias com- bustíveis
Peróxido de sódio	Ácido acético, Anidrido acético, benzaldeído, etanol, metanol, etilenoglicol, acetatos de metila e etila, furfural
Prata e sais de prata	Acetileno, ácido tartárico, ácido oxálico, compostos de amônio

Sódio	Dióxido de carbono, tetraclo- reto de carbono, outros hidro- carbonetos clorados
Sulfeto de hidrogênio	Ácido nítrico fumegante, ga- ses oxidantes

Fonte: Resolução ANVISA RDC nº 222/2018

Tabela 2: Incompatibilidade — Resíduos Químicos x Embalagens de Polietileno de Alta Densidade

Ácido butírico	Dietil benzeno
Ácido nítrico	Dissulfeto de carbono
Ácidos concentrados	Éter
Bromo	Fenol / clorofórmio
Bromofórmio	Nitrobenzeno
Álcool benzílico	o-diclorobenzeno
Anilina	Óleo de canela
Butadieno	Óleo de cedro
Ciclohexano	p-diclorobenzeno
Cloreto de etila, forma líquida	Percloroetileno
Cloreto de tionila	solventes bromados & fluorados
Bromobenzeno	solventes clorados
Cloreto de Amila	Tolueno
Cloreto de vinilideno	Tricloroeteno
Cresol	Xileno

Fonte: Chemical Waste Management Guide - University of Florida - Division of Environmental Health & Safety